JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year I Semester Examinations, September - 2021
 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE, IT)
Time: 3 Hours
Max. Marks: 75

Answer any five questions

All questions carry equal marks
1.a) Convert the following NFA to DFA

State	a	b
Q_{0}	Q_{0}	Q_{1}
Q_{1}	Q_{0}	$\left\{\mathrm{Q}_{0}, \mathrm{Q}_{1}\right\}$
Q_{2}	Q_{0}	Q_{3}
$\mathrm{Q}_{3}{ }^{*}$	Q_{0}	---

b) Construct a DFA to accept the binary strings consisting of even number of 0 's and odd number of 1 's.
2.a) Construct a DFA to accept the binary strings divisible by 5 .
b) Eliminate the $€$-transactions of the following NFA.

State	a	b	$€$
Q_{0}	Q_{4}	Q_{1}	Q_{2}
Q_{1}		Q_{2}	Q_{3}
Q_{2}	Q_{1}	Q_{3}	
$\mathrm{Q}_{3}{ }^{*}$	Q_{0}	--	

3.a) Prove that Regrar Languages are closed under i) Reverse ii) Union.
b) Identify the regular expression accepted by the following DFA.
[7+8]

State	a	b
Q_{0}	Q_{2}	Q_{1}
Q_{1}	Q_{3},	Q_{2}
Q_{2}	Q_{0}	Q_{3}
$\mathrm{Q}_{3}{ }^{*}$	--	---

4.a) Prove that $\mathrm{L}=\left\{\mathrm{WW}^{\mathrm{r}} / \mathrm{W}\right.$ is a binary sting $\}$ is not regular language.
b) Construct a DFA accepting language represented by $(0+1)^{*}(00+11)(0+1)^{*}$. [7+8]
5.a) Construct a PDA to accept the binary strings consists of number of 0 's not equal to number of 1's.
b) Construct a PDA to accept the language generated by the following CFG.

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{Aab} \tag{7+8}
\end{equation*}
$$

$$
\mathrm{A} \rightarrow \mathrm{Aab} \mid \mathrm{b}
$$

6.a) Construct a PDA to accept the following language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} / \mathrm{n}>0\right\}$.
b) Construct a CFG to generate the binary strings consisting the number of 0 's is equal to the twice the number of 1 's.
[8+7]
ex: 010, 001010
7.a) Convert the following grammar into CNF.
$\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \mathrm{a}|\mathrm{b}| \mathrm{aa} \mid \mathrm{bb}$
b) Simplify the following CFG
$S \rightarrow \mathrm{aA} \mid \mathrm{aBB}$
$\mathrm{A} \rightarrow$ Aaal \mid
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bbC}$
$\mathrm{C} \rightarrow \mathrm{b}$
8.a) Construct Turing Machine to accept following language and give its state Transition table and diagram. Check the machine by tracing a suitable instance.

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\} .
$$

b) Design a TM which subtracts two unary numbers. i.e $\mathrm{m}-\mathrm{n}$ where $\mathrm{m}>=\mathrm{n}$.

